
Dissociating Predictive Sentence Processing from Acoustic Correlates in 
Naturalistic EEG Recordings from L1 and L2 Populations 
 
The neural mechanism behind predictive processing is key to sentence 
comprehension. Prior work shows that the brain generates hierarchical predictions to 
gain information from upcoming inputs (Brennan & Hale, 2019; Heilbron et al., 2022; 
Schrimpf et al., 2021). Yet, linguistic predictability also robustly modulates the acoustic 
signal through which spoken language is expressed (e.g., Aylett & Turk, 2004) and the 
brain robustly responds to acoustic modulation (Brodbeck et al., 2022). It is thus 
unclear whether proposed neural signatures of predictive speech processing reflect 
unique cognitive processes or can be reduced to changes in acoustic energy. In this 
study, we aim to dissociate the effect of multiple levels of predictability from their 
acoustic correlates. To this end, we fit temporal response functions (TRFs; Brodbeck 
et al., 2023) against EEG data while participants listen to stories, using both acoustic 
information and linguistic annotations as predictors. 
 The TRF is a powerful tool to estimate neural response dynamics induced by 
both discrete and continuous features. In the current study, we fit TRFs against 
naturalistic EEG recordings with the following predictors: acoustic envelope, 
gammatone acoustic spectrogram, word frequency, next-word surprisal, and structural 
complexity from a bottom-up parser. We fit these models against two naturalistic EEG 
datasets: (1) the publicly available Alice in Wonderland EEG dataset (Bhattasali et al., 
2020), and (2) a dataset recorded while English-L2 participants listened to the Little 
Prince audiobook in English; TRF analyses are identical between datasets. 
Gammatone predictors are generated from the original audiobooks and are believed 
to reflect the cochlear transformation of acoustic signals (Brodbeck et al., 2018). 
Envelopes are derived from the gammatone spectrograms by summing along the 
frequency dimension. Spoken word frequencies come from the SUBTLEX database.      
Surprisal for each word is computed as the negative log probability estimated by a 
GPT-2 model (Radford et al., 2019). Bottom-up parsing node counts follow that used 
in Brennan & Martin (2020). 

We observe a significant modulation of acoustics by surprisal (Figure 1), such 
that higher surprisal values induce more acoustic energy in both the acoustic envelope 
and gammatone spectrogram. However, TRFs estimated with acoustic and linguistic 
predictors show that despite being intertwined, acoustic energy and word surprisal 
independently modulate the EEG signal: TRFs for each predictor explain unique 
variance (Figure 2) and they have different temporal dynamics. Surprisal TRFs show 
peaks in early rather than late time windows (see also Hale et al., 2018; cf. Frank et 
al., 2015); which may reflect the sensitivity of the methodologies used here. TRFs for 
word frequency explained additional variance and peak at around 350 ms, a time 
window commonly attributed to N400 (Lau et al., 2008). TRFs estimated for bottom-up 
node count point at a late frontal negativity peaking at around 500ms in line with prior 
accounts of late EEG components(Brennan & Martin, 2020; Hale et al., 2018; Kaan et 
al., 2000). Comparing the two datasets, the L2 TRFs for bottom-up node count have 
lower magnitude as well as a shorter time window, suggesting differences between L1 
and L2 speakers. 
 In conclusion, we leverage TRFs to disentangle neural responses to acoustic 
energy and word predictability, which are highly intertwined, along with word frequency 
and node counts derived from a bottom-up parser. Our results suggest that word 
frequency, linearly derived surprisal, and bottom-up parsing show distinct temporal 
signatures alongside acoustic covariates. 



Figure 1. Estimated acoustic modulations of GPT-2 surprisal. 

 
 
Figure 2. Estimated temporal response functions for all predictors on both EEG 
datasets. 
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