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 Surprisal-based  accounts  of  syntactic  processing  [1,2]  posit  that  the  magnitude  of  garden  path 
 effects  (GPEs)  can  be  explained  by  the  surprisal  (negative  log  probability)  of  the  disambiguating 
 word  in  context.  Recent  tests  of  this  hypothesis  have  found  that  surprisal  estimates  from  neural 
 language  models  (LMs)  drastically  underestimate  the  magnitude  of  GPEs  in  human  eyetracking 
 [3]  and  self-paced  reading  experiments  [4,5].  One  possible  explanation  for  this  underestimation 
 is  that  LMs  trained  without  an  explicit  syntactic  parsing  objective  can  implicitly  maintain  beliefs 
 over  an  unbounded  number  of  syntactic  parses  in  parallel  [6],  while  humans  might  only  be  able 
 to  consider  as  few  as  one  interpretation  of  a  sentence  at  a  time.  If  a  sentence  is  disambiguated 
 in  favor  of  an  interpretation  that  wasn’t  under  consideration  in  the  first  place,  then  the 
 disambiguation  point  should  be  highly  surprising,  leading  to  a  large  GPE.  If  LMs  implicitly  assign 
 too  much  probability  to  the  globally  correct  parse,  then  the  disambiguating  word  should  be 
 relatively  unsurprising,  leading  to  small  GPEs.  In  this  work,  we  explore  the  hypothesis  that  LMs 
 constrained to consider fewer parses at a time are better at capturing human GPE magnitudes. 
 Models:  We  use  a  class  of  LMs  whose  syntactic  parallelism  can  be  explicitly  manipulated 
 (Recurrent  Neural  Network  Grammars  (RNNGs)  [7]  with  Word-Synchronous  Beam  Search 
 (WSBS)  [8,9]).  RNNGs  are  trained  to  jointly  predict  upcoming  words  and  parsing  actions.  We 
 train  5  random  seeds  of  an  RNNG  on  a  machine-parsed  version  of  the  60m  token  BLLIP 
 corpus,  using  a  left-corner  parsing  strategy.  Trained  RNNGs  can  be  combined  with  the  WSBS 
 inference  algorithm  to  incrementally  search  for  candidate  parses  given  a  sequence  of  words, 
 and  generate  word-level  surprisal  estimates.  The  word  beam  width  (k  w  )  parameter  of  WSBS 
 determines  how  many  distinct  syntactic  parses  the  model  will  consider  at  each  word.  WSBS 
 calculates  a  word-level  surprisal  by  marginalizing  over  all  k  w  parses.  We  obtain  surprisal 
 estimates for experimental items using k  w  ∈ {1,2,3,4,5,10,25,50,100,250,500,1000}. 
 Methods:  We  use  materials  and  self-paced  reading  data  from  [4].  In  Experiment  1  ,  we  compute 
 GPEs,  measured  in  bits  of  surprisal,  for  each  syntactic  construction  and  beam  size.  In 
 Experiment  2  ,  we  predict  GPE  magnitudes  in  reading  times  by  first  fitting  linear  mixed-effects 
 regression  (LMER)  models  to  predict  reading  times  from  surprisal  on  experimental  filler 
 sentences  (while  controlling  for  word  length,  position  and  frequency),  then  predicting  reading 
 times  from  surprisal  on  GP  sentences  using  the  fitted  models,  using  an  identical  LMER  model 
 structure  to  [5].  We  also  analyse  the  predictive  power  of  each  filler  model  on  the  filler  sentences 
 to  see  whether  there  is  a  mismatch  between  k  w  that  best  predicts  GPEs  and  reading  times  in 
 filler  sentences.  In  Experiment  3  ,  we  compute  a  loose  upper-bound  on  GPE  size  by  forcing 
 models  to  only  consider  the  initially  preferred,  but  ultimately  incorrect  parse  of  the  sentence.  The 
 disambiguating  word  is  an  ungrammatical  continuation  of  the  initially  preferred  interpretation, 
 and  should  therefore  have  high  surprisal.  We  manually  remove  all  instances  of  the  globally 
 correct  parse  from  the  beam  in  the  ambiguous  condition,  leave  the  unambiguous  condition 
 unchanged, and calculate the resulting surprisals and GPEs. 
 Results:  In  Experiment  1  ,  we  find  that  GPEs  are  generally  larger  for  models  with  more 
 restricted  parallelism  when  measured  in  surprisal  (lower  k  w  ;  Figure  1,  top).  While  Exp.  1 
 generally  supports  our  hypothesis,  Experiment  2  shows  that  GPE  magnitudes  are  still  drastically 
 underpredicted  across  all  k  w  ,  when  measured  in  predicted  reading  times.  (Figure  1,  bottom).  On 
 filler  sentences,  the  predictive  power  of  the  RNNGs  peaks  around  k  w  =  50,  which  is  generally 
 higher  than  the  k  w  which  produced  the  largest  GPEs  (1  <  k  w  <  5)  (Figure  2).  Experiment  3  shows 
 that  RNNGs  underpredict  GPEs  even  when  models  are  forced  to  only  consider  the  ultimately 
 incorrect  interpretation  of  the  sentence  (Figure  1,  red  bars),  meaning  the  LMs  failures  to  capture 
 GPE  magnitudes  are  not  strictly  driven  by  excessive  syntactic  parallelism,  but  rather  by  a  failure 
 in  RNNGs  to  assign  sufficiently  low  probabilities  to  ungrammatical  continuations.  Our  results 
 suggest  that  GPEs  might  be  better  captured  by  LMs  whose  predictions  are  better  calibrated  to 
 grammatical constraints, or models with limited parallelism and explicit reanalysis mechanisms. 
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 1a. The little girl (who was) fed the lamb  remained  relatively  calm  despite having asked for beef.  (MV/RR) 
 1b. The little girl found (that) the lamb  remained  relatively  calm  despite the absence of its mother.  (NP/S) 
 1c. When the little girl attacked(,) the lamb  remained  relatively  calm  despite the sudden assault.  (NP/Z) 
 GPE:  RT(“remained” | “The little girl fed the lamb”)  - RT(“remained” | “The little girl who was fed the lamb”) 

 Table  1:  An  example  of  a  GP  triplet  from  the  SAP  benchmark  dataset  [4].  Colors  denote  the  critical  word  ,  spillover  1  , 
 and  spillover  2  .  Parentheses  denote  material  only  present  in  the  unambiguous  conditions.  (1a)  has  a  locally 
 ambiguous  verb  phrase  that  can  be  either  a  main  verb  (MV)  or  a  reduced  relative  clause  modifying  the  subject  (RR). 
 (1b)  has  a  locally  ambiguous  noun  phrase  that  can  be  either  the  direct  object  complement  of  the  verb  or  the  subject 
 of  a  sentential  complement  of  the  verb  (S).  (1c)  has  a  locally  ambiguous  noun  phrase  that  can  be  either  the  direct 
 object  complement  of  the  verb,  or  the  subject  of  an  upcoming  independent  clause.  GPEs  are  calculated  as  the 
 difference in reading times at the regions of interest across the ambiguous and unambiguous conditions. 

 Figure 1  : Mean GPEs by WBBS word beam size (k  w  ), averaged  across items, the three regions of interest, and the 
 5 RNNG model random seeds, measured in surprisal (top) and predicted reading times (bottom). Red bars labeled 
 “forced” summarize the results of Exp. 3, which measures the predicted GPEs at k  w  = 1000 when all parses 
 consistent with the globally correct interpretation of the sentence are manually pruned from the beam in the 
 ambiguous condition. Error bars represent bootstrapped 95% confidence intervals. (Empirical GPE magnitudes in 
 humans reported in [4] are 125ms for MVRR, 45ms for NPS, and 112ms for NPZ) 

 Figure 2:  Goodness-of-fit of filler models at various  beam sizes, measures as the delta log likelihood of LMER 
 models with and without surprisal-based predictors. LSTM and GPT-2 results from [4] are included for reference. 


