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In cognitive modeling, word-by-word surprisal is often used as a predictor of processing difficulty,
under a theoretical framework that emphasizes the predictive aspect of real-time language pro-
cessing [5, 7]. In recent years, neural network-based language models (LMs) have been used to
calculate and evaluate surprisal against human reading times [9, 17], which has opened possibil-
ities for refining them as computational models of language processing and using them to study
how predictive processing interacts with other cognitive processes.

Within this line of research, studies using surprisal from Transformer-based LMs have revealed
a strong inverse correlation between the size of LMs and the fit of their surprisal to naturalistic
reading times [11, 14]. Large amounts of training data have also been shown to play a detrimental
role, with surprisal’s fit to reading times starting to degrade after LMs see about two billion tokens
of training data [10]. This degradation due to large amounts of training data seems to be alleviated
by limitations in model size, with surprisal from smaller models degrading less severely compared
to surprisal from their larger counterparts.

Motivated by recent studies that highlight the role of data frequency on the probabilities learned
by LMs [16, 18], we propose word frequency as a unifying explanation for the inverse correlation
between LMs’ size, training data amount, and surprisal’s fit to reading times. That is, after LMs
learn to predict frequent words accurately during early training, large amounts of training data help
them predict rare words excessively accurately, which drives the adverse effect of training data
amount. However, during this later stage of training, limitations in model size constrain this ex-
cessive accuracy, thereby preventing surprisal from smaller LMs from degrading as quickly as
surprisal from larger LMs. For regression models fit to human reading times, this makes two con-
crete predictions. The first is that the difference in fit to reading times will be the greatest on the
subset of the rarest words across LMs of different sizes and training data amounts, where they
make the most divergent predictions. The second is that the same predictor that operationalizes
word frequency will demonstrate differential fits to reading times depending on which LM surprisal
is included in the regression model.

We tested these two predictions using Pythia English LMs [2] of four different sizes (160M,
1B, 2.8B, 12B parameters) at five different points in later training (after 1,000, 2,000, 4,000, 8,000,
143,000 training batches of∼2M tokens each) and five English self-paced reading and eye-tracking
corpora [3, 4, 6, 8, 15]. For each of the ten reading time measures,1 linear mixed-effects (LME)
models were fit to approximately half of the data points using LM surprisal, unigram surprisal,
and standard baseline predictors with maximal random effects supported by the data [1, Table 1].
Subsequently, held-out errors were calculated on the exploratory sets containing about 25% of
the data points and further separated according to quintiles defined by unigram frequency to test
the first prediction. Additionally, a new set of LME models without unigram surprisal was fit to the
same data, and the increase in held-out log-likelihood (∆LogLik) attributable to unigram surprisal
was calculated on the exploratory sets to test the second prediction.

The regression modeling results provide support for both predictions, with mean squared errors
on the subset of the rarest words showing the largest influence of LM size and training data amount
(Figure 1a), and word frequency providing stronger fits to reading times over surprisal from larger
LMs trained on more data (Figure 1c). These results provide insights into the factors that shape LM
surprisal, and have important implications for using it to study whether frequency effects dissociate
from predictability effects in naturalistic reading [12, 13].

1Self-paced reading times [4, 15]; first-pass, go-past durations [3, 6, 8]; scan path durations [6, 8]
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Datasets LME Formula

Self-paced [4, 15] RT ∼ LMsurp + LMsurp_prev + Unisurp + length + index +
(LMsurp + LMsurp_prev + length + index + 1 | subject)

Eye-tracking [3, 6, 8] RT ∼ LMsurp + LMsurp_prev + Unisurp + length + index + pfix +
(LMsurp + index + 1 | subject)

Table 1: LME formulae used in the experiments. index: position of the word within the sentence, pfix:
whether the previous word was fixated. All predictors were z-transformed.
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Figure 1: Held-out mean squared errors from LME models aggregated over ten reading time datasets, on
the first and fifth word frequency quintiles (a and b; zoomed to equal scale on y-axis for clarity), increase
in held-out log-likelihood due to unigram surprisal over surprisal from different LMs (c), increase in held-
out log-likelihood due to surprisal from different LMs over unigram surprisal (d). The effects of model size
and training data amount on MSE of data points in the first quintile (a) is significant at p < 0.001 level by
a permutation test that permutes quintile membership, and the interaction term between model size and
number of training batches is a significant predictor of cumulative ∆LogLik at p < 0.001 level (c).
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