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Overview. A parser for Minimalist grammars (MGs; Stabler 2013) has been shown to success-
fully model sentence processing preferences across an array of languages and phenomena when
combined with complexity metrics that relate parsing behavior to memory usage (Gerth 2015;
Graf et al. 2017; De Santo 2020:a.o.). This approach (henceforth: MG Model) provides a quan-
tifiable theory of the effects of fine-grained grammatical structure on cognitive cost, and can help
strengthen the link between generative syntactic theory and sentence processing. However, work
on it has focused on modeling off-line asymmetries. Here, we extend this approach by showing
howmeasures of effort that explicitly consider minimalist-like structure-building operations improve
our ability to account for word-by-word (online) behavioral data.
The MGModel. The model we adopt links structural details to processing load by associating the
stack states of a (deterministic) top-down parser (Stabler 2013) to memory burden (Kobele et al.
2013). This parser is string-driven: when encountering a displaced word (e.g., “who”), it prioritizes
finding a path to its base position. In this abstract, memory usage is then measured based on how
long a node is kept inmemory through a derivation, tracking how the derivational operations interact
with fine-grained structural details to affect linear word order (Tenure). The annotation schema of
Fig. 1 captures how the parser’s tree traversal strategy affects memory: the superscript (index)
of a node n encodes the moment n was predicted and put in memory. The subscript (outdex)
encodes the moment n is confirmed and frees up memory. Tenure for n is outdex(n) − index(n):
e.g. Tenure(do) = 10− 3 = 7. While past work has leveraged offline metrics estimating effort for a
full derivation, we can derive online measures by extracting Tenure values for every (pronounced)
lexical item (Fig. 1).
Evaluating Tenure Online. Offline subject/object relative clause (SRC/ORC) asymmetries have
been extensively probed with the MG Model (Graf et al. 2017; De Santo 2020). Because of this,
we ask whether structure-building effort as captured by Tenure improves model fit to the self-
paced reading data made available for English SRCs/ORCs in the Syntactic Ambiguity Processing
Benchmark (Huang et al. 2024), beyond established expectation-based predictors. First, we fit a
baseline linear mixed-effects model to the RTs, with several lexical control predictors. We then add
to the baseline model surprisal predictors, fitting two models with surprisal values derived either
from an LSTM (Gulordava 2018) or GPT-2 small (Radford et al. 2019). Then, we compute via the
MG model word-by-word Tenure values for derivations built for RC items in the benchmark. The
MG trees follow standard generative assumptions for the main clause of each sentence, and a
wh-movement analysis for the structure of RCs (Chomsky 1977). Finally, we fit two models adding
these MG Tenure values to the two surprisal models. The best performing model was the GPT-
surprisal + Tenure model (Table 1), showing that taking Tenure into account significantly improves
model fit to RT data. In particular, we found that Tenure of both the current word and the preceding
two words is associated with significantly slower RTs independently of surprisal (Table 2).
Results and Discussion. Our results show that predictors relying on explicit structure-building
operations improve our ability to model word-by-word RTs, beyond the contribution of surprisal
measures— adding support to the cognitive relevance of transparent structure-building measures,
and to the use of the MG Model in investigating the interaction of generative syntax and human
sentence processing. Additionally, the model’s sensitivity to fine-grained grammatical assumptions
implies that analytical choices have a significant impact on the derived Tenure values. Thus, future
work could exploit online behavioral data to distinguish competing syntactic proposals (and, po-
tentially, different syntactic formalisms) based on their psycholinguistic predictions, thus clarifying
how/which aspects of sentence structure modulate processing difficulty.



CP

C0

do TP

T’

T vP

DP

the Gems

v’

v VP

love who

1

2
2

3

3

10

3

4

4

5

5

14

5

6

6

11

11

12

11

13

6

7

7
15

7

8

8

16

8

9

Figure 2.4: Annotated MG derivation tree for Who do the Gems love?. Boxed nodes are those with
tenure value greater than 2, following (Graf and Marcinek, 2014).

actual input received. Because of this, while do is postulated at step 3, it can only be scanned at

step 10. Similarly, T can only be scanned after who, do, and the whole DP the Gems have been

scanned. A summary of the parser’s actions for this example can be found in Table 2.1.

Essential to this procedure is the role of memory: if a node in the tree is hypothesized at step i,

but cannot be worked on (scanned) until step j, it must be stored for j� i steps in a priority queue.

Moreover, an important advantage of a top-down parser is that the input string is read as a stream,

and thus we do not require a separate memory buffer to keep hold of it while the structure is being

built.

To make the traversal strategy easy to follow, I adopt Kobele et al. (2013)’s notation, in which

each node in the tree is annotated with an index (superscript) and an outdex (subscript). Intuitively,

the annotation indicates for each node in the tree when it is first conjectured by the parser (index)

and placed in the memory queue, and at what point it is considered completed and flushed from
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Who do the Gems love
Tenure 1 7 1 2 8

Figure 1: Example of an MG derivation tree forWho
do the Gems love? with annotated parse steps, and
tenure values for pronounced lexical items. Unary
branches indicate movement landing sites.

df AIC BIC
Baseline 14 1047981 1048110
LSTM Surprisal 19 1047506 1047681
GPT Surprisal 19 1047414 1047589
LSTM Surprisal + Tenure 23 1045549 1045761
GPT Surprisal + Tenure 24 1045493 1045714

Table 1: Model Comparison.

RT
Predictors Estimate Std. Error t value
(Intercept) 410.8253928 5.3006171 77.5052004 ***
Tenure 5.5809141 1.2603398 4.4281028 ***
Tenure i− 1 12.1147670 1.4416750 8.4032578 ***
Tenure i− 2 5.0687843 0.9777471 5.1841468 ***
Surprisal 13.4585782 1.9321063 6.9657547 ***
Surprisal i− 1 11.6738518 1.7103038 6.8256014 ***
Surprisal i− 2 1.5617456 1.8103692 0.8626669
Word Position 4.7241724 1.1106569 4.2534938 ***
logfreq 0.9923497 1.9407082 0.5113338
length 18.1574795 2.0805941 8.7270649 ***
logfreq i− 1 -0.4084933 1.9069223 -0.2142160
length i− 1 8.5549350 2.1022739 4.0693723 ***
logfreq i− 2 -2.9067570 2.0909322 -1.3901728
length i− 2 3.4984582 2.0355144 1.7187097
logfreq:length 0.8208 1.4693 0.559
logfreq i− 1:length i− 1 -4.4242 1.6809 -2.632 **
logfreq i− 2:length i− 2 -0.5443 1.6193 -0.336

Table 2: Lmer Summary for best fitting model (GTP Surprisal + Tenure).
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